Solutions - Homework 1

(Due date: January 19th @ 11:59 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (28 PTS)

a) Simplify the following functions using ONLY Boolean Algebra Theorems. For each resulting simplified function, sketch the logic circuit using AND, OR, XOR, and NOT gates. (15 pts)

 $\checkmark F(a,b,c) = \prod (M_0,M_1,M_4,M_6)$

$$\checkmark F = \overline{\chi(y \oplus z) + \overline{y}}$$

$$\checkmark F = (A + \overline{B} + D)(\overline{A}B + \overline{D})$$

✓ $F(A,B,C) = \prod (M_0,M_1,M_4,M_6) = \sum (m_2,m_3,m_5,m_7) = \bar{A}B\bar{C} + \bar{A}BC + \bar{A}BC + \bar{A}BC = \bar{A}B(\bar{C}+C) + \bar{A}C(\bar{B}+B)$ = $\bar{A}B + \bar{A}C$

 $\checkmark F = \overline{x(y \oplus z) + \overline{y}} = \overline{x(y \oplus z)}.y = (\overline{x} + \overline{y \oplus z})y = (\overline{x} + yz + \overline{y}\overline{z})y = \overline{x}y + yz$

$$\checkmark F = (A + \overline{B} + D)(\overline{A}B + \overline{D}) = (X + D)(\overline{X} + \overline{D}) = X\overline{D} + \overline{X}D, X = A + \overline{B}$$
$$= (A + \overline{B})\overline{D} + \overline{A}BD = A\overline{D} + \overline{B}\overline{D} + \overline{A}BD = \overline{D}(A + \overline{B}) + D\overline{A}B$$

b) Determine whether or not the following expression is valid, i.e., whether the left- and right-hand sides represent the same function. Suggestion: complete the truth tables for both sides: (5 pts)

$$x_1x_3 + \overline{x_2} \overline{x_3} + \overline{x_1}x_2 = x_2x_3 + \overline{x_1} \overline{x_3} + x_1 \overline{x_2}$$

Left-hand side:

$$x_1(x_2 + \overline{x_2}) x_3 + (x_1 + \overline{x_1}) \overline{x_2} \overline{x_3} + \overline{x_1} x_2(x_3 + \overline{x_3}) = x_1 x_2 x_3 + x_1 \overline{x_2} x_3 + x_1 \overline{x_2} \overline{x_3} + \overline{x_1} \overline{x_2} \overline{x_3} + \overline{x_1} x_2 x_3 + \overline{x_1} x_2 \overline{x_3}$$

$$= \sum_{n=0}^{\infty} m(0, 2, 3, 4, 5, 7)$$

Right-hand side:

$$(\overline{x_1} + \overline{x_1})x_2x_3 + \overline{x_1}(x_2 + \overline{x_2})\overline{x_3} + x_1\overline{x_2}(x_3 + \overline{x_3}) = x_1x_2x_3 + \overline{x_1}x_2x_3 + \overline{x_1}x_2\overline{x_3} + \overline{x_1}\overline{x_2}\overline{x_3} + x_1\overline{x_2}x_3 + x_1\overline{x_2}\overline{x_3}$$

$$= \sum m(0.2,3,4,5,7)$$

1

Both left-hand and right-hand equations represent the same Boolean function.

- c) For the following Truth table with two outputs: (8 pts)
 - Provide the Boolean functions using the Canonical Sum of Products (SOP), and Product of Sums
 - Express the Boolean functions using the minterms and maxterms representations.
 - Sketch the logic circuits as Canonical Sum of Products and Product of Sums. (3 pts)

$x y z f_1 f_2$ 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 1 0 1 1 1 1

Sum of Products

Product of Sums

$$f_1 = \bar{x}\bar{y}\bar{z} + x\bar{y}z + xyz \qquad f_1 = (x+y+\bar{z})(x+\bar{y}+z)(x+\bar{y}+\bar{z})(\bar{x}+y+z)(\bar{x}+\bar{y}+z)$$

$$f_2 = \bar{x}\bar{y}z + \bar{x}y\bar{z} + x\bar{y}\bar{z} \qquad f_2 = (x+y+z)(x+\bar{y}+\bar{z})(\bar{x}+y+\bar{z})(\bar{x}+\bar{y}+z)(\bar{x}+\bar{y}+\bar{z})$$

Minterms and maxterms:
$$f_1 = \sum (m_0, m_5, m_7) = \prod (M_1, M_2, M_3, M_4, M_6).$$
 $f_2 = \sum (m_1, m_2, m_4) = \prod (M_0, M_3, M_5, M_6, M_7).$

PROBLEM 2 (18 PTS)

- a) Security combinations: A lock only opens (z = 0) when the 5 switches (x_1, x_2, x_3, x_4, x_5) are set in any of the 3 configurations shown in the figure, otherwise the lock is closed (z = 1). A switch generates a '1' in the ON position, and a '0' in the OFF position.
- ON (1)
 OFF (0) $x_1 \ x_2 \ x_3 \ x_4 \ x_5$ ON (1)

 OFF (0)
- Provide the simplified Boolean equation for the output z and sketch the logic circuit.

x_1	x_2	x_3	x_4	x_5	Z		
0	0	1	0	1	0		
0	1	0	0	1	0		
1 0 1 0 1							
	All rer	naining	cases		1		

x_1x_2	00	01	11	10
0	٦	0	1	1
1	0	1	1	0

$$\bar{z} = \overline{x_1} \, \overline{x_2} x_3 \overline{x_4} x_5 + \overline{x_1} x_2 \overline{x_3} \, \overline{x_4} x_5 + x_1 \overline{x_2} x_3 \overline{x_4} x_5 = \overline{x_4} x_5 (\overline{x_1} \, \overline{x_2} x_3 + \overline{x_1} x_2 \overline{x_3} + x_1 \overline{x_2} x_3)
\bar{z} = \overline{x_4} x_5. f(x_1, x_2, x_3)$$

*
$$f(x_1, x_2, x_3) = \sum m(1,2,5) \rightarrow \bar{f}(x_1, x_2, x_3) = \sum m(0,3,4,6,7)$$

$$z = \overline{\overline{x_4}x_5.f(x_1,x_2,x_3)} = \overline{\overline{x_4}x_5} + \overline{f}(x_1,x_2,x_3) = x_4 + \overline{x_5} + x_2x_3 + \overline{x_2}\,\overline{x_3} + x_1x_2$$

- b) A doctoral student is defending his Dissertation. A 4-member committee determines whether to accept or reject the work. A simple majority vote is required. In case of a tie, the outcome is determined by the vote of the chair of the committee.
 - Design the circuit (provide the simplified Boolean equation and sketch the logic circuit) that generates f=1 if the committee accepts the work, and f=0 if the work is rejected. We assign x, y, z, w to the vote of each committee member (w is the vote of the chair of the committee), where '1' means accept, and '0' reject. (8 pts)

3

PROBLEM 3 (11 PTS)

a) The following circuit has the following logic function: $f = \bar{s}a + sb$. \checkmark Complete the truth table of the circuit, and sketch the logic circuit (3 pts)

- b) We can use several instances of the previous circuit to implement different functions. (8 pts)
 - For example, the following selection of inputs produce the function: $g = \overline{x_1}x_2 + x_2x_3$. Demonstrate that this is the case.

in1	in2	in3	in4	in5	in6	in7
0	1	x_2	0	x_3	x_2	x_1

$$f_1 = \overline{x_2}(0) + x_2(1) = x_2$$

 $f_2 = \overline{x_2}(0) + x_2(x_3) = x_2x_3$

$$g = \overline{x_1}(x_2) + x_1(x_2x_3) = x_2(\overline{x_1} + x_1x_3) = x_2(\overline{x_1} + x_1)(\overline{x_1} + x_3)$$
$$g = x_2(\overline{x_1} + x_3) = \overline{x_1}x_2 + x_2x_3$$

• Given the following inputs, provide the resulting function *g* (minimize the function).

in1	in2	in3	in4	in5	in6	in7
χ_3	0	<i>x</i> ₁	1	0	<i>x</i> ₁	x_2

$$f_1 = \overline{x_1}(x_3) + x_1(0) = \overline{x_1}(x_3)$$

 $f_2 = \overline{x_1}(1) + x_3(0) = \overline{x_1}$

$$g = \overline{x_2}(\overline{x_1}x_3) + x_2(\overline{x_1}) = \overline{x_1}(\overline{x_2}x_3 + x_2) = \overline{x_1}(x_2 + \overline{x_2})(x_2 + x_3)$$

$$g = \overline{x_1}x_2 + \overline{x_1}x_3$$

PROBLEM 4 (25 PTS)

a) Complete the truth table describing the output of the following circuit and write the simplified Boolean equation (6 pts).

4

x	У	z	t	f
0	0	0	0	1
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	1

 $f = \bar{x} + y + (y \oplus z) = \bar{x} + y + z$

b) Complete the timing diagram of the logic circuit whose VHDL description is shown below: (6 pts)

```
library ieee;
use ieee.std_logic_1164.all;
                                          а
entity circ is
 port ( a, b, c: in std_logic;
                                          b
         f: out std_logic);
end circ;
                                         С
architecture struct of circ is
  signal x, y: std_logic;
                                         Х
begin
 x \le not(a) xor not(c);
                                         У
  f \le y and (not b);
 y <= x nor b;
end struct;
                                         f
```

c) The following is the timing diagram of a logic circuit with 3 inputs. Sketch the logic circuit that generates this waveform. Then, complete the VHDL code (using VHDL signals is optional). (8 pts)

d) Complete the timing diagram of the following circuit: (5 pts)

PROBLEM 5 (18 PTS)

• A numeric keypad produces a 4-bit code xyzw representing an unsigned number from 0 to 9. We want to design a logic circuit that converts each 4-bit code to Morse code (where alphanumeric characters are encoded into sequences of dots and dashes). The figure depicts the Morse code representations for numbers from 0 to 9. The circuit generates 5 bits, where a '0' represents a dot, and '1' represents a dash.

Decimal value	Morse code
0	
1	•
2	• • • • • •
3	• • • • • •
4	• • • • •
5	• • • • •
6	- • • • •
7	• • •
8	•
9	

- \checkmark Complete the truth table for each output (q_4 , q_3 , q_2 , q_1 , q_0). (3 pts)
- ✓ Provide the simplified expression for each output $(q_4, q_3, q_2, q_1, q_0)$. Use Karnaugh maps for q_4 , q_3 , q_2 , and the Quine-McCluskey algorithm for q_1 , q_0 . Note it is safe to assume that the codes 1010 to 1111 will not be produced by the keypad. (15 pts)

Value	x	У	z	w	\mathbf{q}_4	\mathbf{q}_3	\mathbf{q}_2	\mathbf{q}_1	\mathbf{q}_0
0	0	0	0	0	1	1	1	1	1
1	0	0	0	1	0	1	1	1	1
2	0	0	1	0	0	0	1	1	1
3	0	0	1	1	0	0	0	1	1
4	0	1	0	0	0	0	0	0	1
5	0	1	0	1	0	0	0	0	0
6	0	1	1	0	1	0	0	0	0
7	0	1	1	1	1	1	0	0	0
8	1	0	0	0	1	1	1	0	0
9	1	0	0	1	1	1	1	1	0
	1	0	1	0	Х	х	Х	X	X
	1	0	1	1	х	X	X	X	X
	1	1	0	0	Х	Х	X	X	X
	1	1	0	1	Х	Х	X	X	X
	1	1	1	0	х	X	X	X	X
	1	1	1	1	X	X	x	x	X

q ₄ xy	00	01	11	10
00	1	0	Χ	
01	0	0	Х	1
11	0	1	Х	Х
10	0	1	Х	X

q_3 xy	7 00	01	11	10	
00	1	0	Х	1	
01	1	0	Х	1	
11	0	1	Х	Х	
10	0	0	Х	Х	

q_2 xy	7 00	01	11	10
00		0	X	1
01_	1	0	Х	1
11	0	0	Х	Х
10	1	0	Х	X

$$q_4 = \bar{y}\bar{z}\bar{w} + x\bar{y} + yz$$

$$q_3 = \bar{y}\bar{z} + x\bar{y} + yzw$$

$$q_2 = \bar{y}\bar{z} + \bar{w}\bar{y} + x$$

• $q_1 = \sum m(0,1,2,3,9) + \sum d(10,11,12,13,14,15).$

Number	4-literal	3-literal	2-literal
of ones	implicants	implicants	implicants
0	$m_0 = 0000 \checkmark$	$m_{0,1} = 000 - \checkmark$ $m_{0,2} = 00 - 0 \checkmark$	$m_{0,1,2,3} = 00$ $m_{0,2,1,3} = 00$
1	$m_1 = 0001 \checkmark m_2 = 0010 \checkmark$	$m_{1,3} = 00-1 \checkmark$ $m_{1,9} = -001 \checkmark$ $m_{2,3} = 001- \checkmark$ $m_{2,10} = -010 \checkmark$	$\begin{array}{rcl} m_{1,3,9,11} & = & -0-1 \\ m_{1,9,3,11} & = & -0-1 \\ m_{2,3,10,11} & = & -01 - \\ m_{2,10,3,11} & = & -01 - \end{array}$
2	$m_3 = 0011 \checkmark$ $m_9 = 1001 \checkmark$ $m_{10} = 1010 \checkmark$ $m_{12} = 1100 \checkmark$	$m_{3,11} = -011 \checkmark$ $m_{9,11} = 10-1 \checkmark$ $m_{9,13} = 1-01 \checkmark$ $m_{10,11} = 101- \checkmark$ $m_{10,14} = 1-10 \checkmark$ $m_{12,13} = 110- \checkmark$ $m_{12,14} = 11-0 \checkmark$	$m_{9,11,13,15} = 11$ $m_{9,13,11,15} = 11$ $m_{10,11,14,15} = 1-1$ $m_{10,14,11,15} = 1-1$ $m_{12,13,14,15} = 11 m_{12,14,13,15} = 11-$
3	$m_{11} = 1011 \checkmark m_{13} = 1101 \checkmark m_{14} = 1110 \checkmark$	$m_{11,15} = 1-11 \checkmark$ $m_{13,15} = 11-1 \checkmark$ $m_{14,15} = 111- \checkmark$	
4	m ₁₅ = 1111 ✓		

 $q_1 = \overline{x}\overline{y} + \overline{y}w + \overline{y}z + xw + xz + xy$

Prime Implicants		Minterms					
FIIME IMPIICAL	ILS	0	1	2	3	9	
m _{0,1,2,3}	$\bar{x}\bar{y}$	x	X	X	X		
$\mathbf{m}_{1,3,9,11}$	ӯw		X		X	X	
m _{2,3,10,11}	$\bar{y}z$			Х	X		
m 9,11,13,15	xw					X	
m _{10,11,14,15}	χz						
m _{12,13,14,15}	xy						

 $\Rightarrow q_1 = \bar{x}\bar{y} + xw$

• $q_0 = \sum m(0,1,2,3,4) + \sum d(10,11,12,13,14,15).$

Number	4-literal	3-literal	2-literal	
of ones	implicants	implicants	implicants	
0	$m_0 = 0000 \checkmark$	$m_{0,1} = 000 - \checkmark$ $m_{0,2} = 00 - 0 \checkmark$ $m_{0,4} = 0 - 00$	$m_{0,1,2,3} = 00$ $m_{0,2,1,3} = 00$	
1	$m_1 = 0001 \checkmark$ $m_2 = 0010 \checkmark$ $m_4 = 0100 \checkmark$	$m_{1,3} = 00-1 \checkmark$ $m_{2,3} = 001- \checkmark$ $m_{2,10} = -010 \checkmark$ $m_{4,12} = -100$	$m_{2,3,10,11} = -01 - m_{2,10,3,11} = -01 - 01 - 01 - 01 - 01 - 01 - 01 - 0$	
2	$m_3 = 0011 \checkmark$ $m_{10} = 1010 \checkmark$ $m_{12} = 1100 \checkmark$	$m_{3,11} = -011 \checkmark$ $m_{10,11} = 101 - \checkmark$ $m_{10,14} = 1 - 10 \checkmark$ $m_{12,13} = 110 - \checkmark$ $m_{12,14} = 11 - 0 \checkmark$	$m_{10,11,14,15} = 1-1 m_{10,14,11,15} = 1-1 m_{12,13,14,15} = 11$ $m_{12,14,13,15} = 11$	
3	$m_{11} = 1011 \checkmark$ $m_{13} = 1101 \checkmark$ $m_{14} = 1110 \checkmark$	$m_{11,15} = 1-11 \checkmark$ $m_{13,15} = 11-1 \checkmark$ $m_{14,15} = 111- \checkmark$		
4	m ₁₅ = 1111 ✓			

 $q_0 = \bar{x}\bar{z}\bar{w} + \bar{x}\bar{y} + \bar{y}z + xz + xy$

Prime Implicants		Minterms					
		0	1	2	3	4	
m _{0,4}	$\bar{x}\bar{z}\bar{w}$	x				X	
m _{4,12}	ȳz̄₩					X	
m _{0,1,2,3}	$\bar{x}\bar{y}$	x	X	X	X		
m _{2,3,10,11}	$\bar{y}z$			Х	Х		
m _{10,11,14,15}	χz						
m _{12,13,14,15}	xy						

7

 $\Rightarrow q_0 = \bar{x}\bar{y} + \bar{x}\bar{z}\overline{w}$